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Abstract: 

Is human cognition best characterized in terms of the systematic nature of classical symbol processing 

systems (as argued by Fodor & Pylyshyn, 1988), or in terms of the context-sensitive, embedded 

knowledge characteristic of classical connectionist or neural network systems? We attempt to bridge 

these contrasting perspectives in several ways. First, we argue that human cognition exhibits the full 

spectrum, from extreme context sensitivity to high levels of systematicity. Next, we leverage 

biologically-based computational modeling of different brain areas (and their interactions), at multiple 

levels of abstraction, to show how this full spectrum of behavior can be understood from a 

computational cognitive neuroscience perspective. In particular, recent computational modeling of the 

prefrontal cortex / basal ganglia circuit demonstrates a mechanism for variable binding that supports 

high levels of systematicity, in domains where traditional connectionist models fail. Thus, we find that 

this debate has helped advance our understanding of human cognition in many ways, and are optimistic 

that a careful consideration of the computational nature of neural processing can help bridge seemingly 

opposing viewpoints. 
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Introduction 
	
  
	
  

In this chapter we address the claims made by Fodor & Pylyshyn (1988) (FP88 herafter). We 

strike a middle ground between classic symbolic and connectionist perspectives, arguing that cognition is 

less systematic than classicists claim, but that connectionist, neural-processing-based theories have yet to 

explain the extent to which it is systematic. We offer a sketch of an emerging understanding of the basis of 

human systematicity in terms of interactions between specialized brain systems, leveraging the 

computational principles identified and empirical work done in the quarter-century since the target work 

was published. We identify a full spectrum of processing mechanisms, arrayed along the continuum 

between context sensitivity and combinatorial, systematic processing, each associated with different parts 

of the human brain. We find that attempting to understand the role of these different brain areas through the 

lens of systematicity results in a rich picture of human cognitive abilities. 

FP88 make two central claims for what a classical symbol processing system must be capable of, 

which define a Classical model: 

	
  
1. Mental representations have combinatorial syntax and semantics. Complex representations 

(“molecules”) can be composed of other complex representations (compositionality), or simpler 

“atomic” ones, and these combinations behave sensibly in terms of the constituents. 

	
  
2. Structure sensitivity of processes. There is a separation between form and content, exemplified in the 

distinction between syntax and semantics, and processes can operate on the form (syntax) while 

ignoring the semantic content. 
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Taken together, these abilities enable a system to be fully systematic and compositional. 

Systematicity comes directly from the ability to process the form or structure of something, independent of 

its specific contents: if you can process sentences with a given syntax (e.g., Noun Verb Object) then you 

can process any constituent words in such sentences – you do not have to relearn the syntax all over again 

for each new word. In Chomsky’s famous example, you can tell that “Colorless green ideas sleep 

furiously” is grammatically correct because you can encode its structural form, independent of the (lack of) 

meaning, while “Furiously sleep ideas green colorless” is not grammatically correct. FP88 made the point 

that connectionist models of that time failed to exhibit these features, and thus were insufficient models of 

the full power of human cognition (Fodor & Pylyshyn, 1988; Fodor & McLaughlin, 1990; McLaughlin, 

1993). This debate remains active to this day, with various critical commentaries (Aizawa, 1997; Cummins, 

1996; Hadley, 1994; Horgan & Tienson, 1996; Matthews, 1997; van Gelder, 1990), anthologies 

(Macdonald & Macdonald, 1995), and a book-length treatment (Aizawa, 2003). Recently, Bayesian 

symbolic modelers have raised similar critiques of neural network models (Kemp & Tenenbaum, 2008; 

Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010), which are defended in return (McClelland, 

Botvinick, Noelle, Plaut, Rogers, Seidenberg, & Smith, 2010). 

Qualitatively, there are two opposing poles in the space of approaches one can take in attempting 

to reconcile the FP88 and subsequent critiques with the fact that the human brain is, in fact, made of 

networks of neurons. One could argue that this systematic, compositional behavior is a defining feature of 

human cognition, and figure out some way that networks of neurons can implement it (the “mere 

implementation” approach). Alternatively, one could argue that the kind of systematicity championed by 

FP88 is actually not a very good characterization of human cognition, and that a closer examination of 

actual human behavior shows that people behave much more as would be expected from networks of 

neurons, and not much as would be expected from a classical symbol processing system (the “dismissive” 

approach). Few connectionist researchers have shown much enthusiasm for the project of merely 

implementing a symbolic system, although proof-of-concept demonstrations do exist (Touretzky, 1990). 

Instead, there have been numerous attempts to demonstrate systematic generalization with neural 

networks (Bodén & Niklasson, 2000; Chalmers, 1990; Christiansen & Chater, 1994; Hadley, 1997; 
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Hadley & Hayward, 1997; Niklasson & van Gelder, 1994; Smolensky, 1988, 1990b; Smolensky & 

Legendre, 2006). Also, careful examinations of language (Johnson, 2004) and various aspects of human 

behavior have questioned whether human language, thought, and behavior really are as systematic as it is 

commonly assumed (van Gelder & Niklasson, 1994). 

An intermediate approach is to attempt to implement a symbolic system using neural networks 

with the intent of finding out which symbolic aspects of systematicity are plausible from a neural 

perspective and which are not (Lebiere & Anderson, 1993). This attempt to implement the ACT-R cognitive 

architecture using standard neural network constructs such as Hopfield networks and feedforward networks 

resulted in a considerable simplification of the architecture. This included both the outright removal of 

some of its most luxuriant symbolic features as neurally implausible, such as chunks of information in 

declarative memory that could contain lists of items and production rules that could perform arbitrarily 

complex pattern-matching over those chunks. More fundamentally, neural constraints on the architecture 

led to a modular organization that combines massive parallelism within each component (procedural 

control, declarative memory, visual processing, etc.) with serial synchronization of information transfers 

between components. That organization in turn has been validated using neural localization of architectural 

modules using neural imaging techniques (Anderson, 2007). In general, this hybrid approach has resulted 

in an architecture that largely preserves the systematicity of the original one while greatly improving its 

neural plausibility. It should be pointed out though that systematicity in ACT-R is limited both by the need 

to acquire the skills and knowledge needed to perform any of the tasks in which it is demonstrated, but 

more fundamentally by the combination of the symbolic level with a subsymbolic level that controls every 

aspect of its operations (procedural action selection, information retrieval from memory, etc.) 

The reason the systematicity debate has persisted for so long is that both positions have merit. In 

this paper, we take a “middle way” approach, arguing that purely systematic symbol processing systems do 

not provide a good description of much of human cognition, but nevertheless that there are some clear 

examples where people can approximate the systematicity of symbol processing systems, and we need to 

understand how the human brain can achieve this feat. Going further, we argue that a careful consideration 
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of all the ways in which the human brain can support systematicity actually deals with important 

limitations of the pure symbol processing approach, while providing a useful window into the nature of 

human cognition. From a neural mechanisms perspective, we emphasize the role that interactions between 

brain systems including the more “advanced” brain areas, specifically the prefrontal cortex / basal ganglia 

(PFC/BG) system, play in enabling the systematic aspects of human cognition. In so doing, we move 

beyond the limitations of traditional “connectionist” neural network models, while remaining committed to 

only considering neural mechanisms that have strong biological support. 

While the overall space of issues relevant to this systematicity debate is quite high-dimensional 

and complex, one very important principal component can be boiled down to the issue of the context 

sensitivity vs combinatoriality tradeoff. At the extreme context sensitivity end of the spectrum, the system 

maintains a lookup table that simply memorizes each instance or exemplar, and the appropriate 

interpretation or response to it. Such a system is highly context sensitive, and thus can deal with each 

situation on a case-by-case basis, but is unable to generalize to novel situations. At the other end, the 

system is purely combinatorial and processes each separable feature in the input independently, without 

regard for the content in other feature channels. Such a purely combinatorial system will readily generalize 

to novel inputs (as new combinations of existing features), but is unable to deal with special cases, 

exceptions, or any kind of nonlinear interactions between features. It seems clear that either extreme is 

problematic and that a more balanced approach is needed. This balance can be accomplished in two ways. 

First, one could envisage representations and information-processing mechanisms with intermediate 

degrees of context sensitivity. Second, one could envisage a combination of processing systems that 

specialize on each of these distinct ends of the spectrum. These two strategies are not incompatible and can 

be combined. In this paper we argue that the brain incorporates functional subsystems that fall along 

various points of the spectrum, with evolutionarily older areas being strongly context-sensitive and newer 

areas, notably the prefrontal cortex, being more combinatorial, though still not completely combinatorial. 

This limited combinatoriality is expected to produce limited systematicity in behavior. We argue that 

human cognition exhibits precisely this kind of limited systematicity. 
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Insert Figure 1 about here. 
	
  
	
  
	
  

The limits of human systematicity have been pointed out before (Johnson, 2004; van Gelder & 

Niklasson, 1994). Here we limit ourselves to three well-known examples from vision, language, and 

reasoning. Our first example is shown in Figure 1. The context surrounding the middle letter of each word 

is critical for disambiguating this otherwise completely ambiguous input. A purely combinatorial system 

would be unable to achieve this level of context sensitivity. Our second example is from the domain of 

language and illustrates the interplay between syntax and semantics. Consider the sentences: 

	
  
1a. Time flies like an arrow. 

1b. Fruit flies like a banana. 

Again, people automatically take the context into account and interpret ambiguous words such as “like” 

and “flies” appropriately based on this context. Our final example is from the domain of logical reasoning. 

Formal logic is designed to be completely context invariant and content free. Yet, psychological studies 

with the so-called Wason card selection task have shown that human reasoning is strongly sensitive to 

concrete experience. People can easily decide who to card at a bar given a rule such as “you can only drink 

if you are over 21”, but when given the same logical task in abstract terms, their performance drops 

dramatically (Griggs & Cox, 1982; Wason & Johnson-Laird, 1972). Even trained scientists exhibit strong 

content effects on simple conditional inferences (Kern, Mirels, & Hinshaw, 1983). More examples from 

other domains (e.g., the underwater memory experiments of Godden and Baddeley (Godden & Baddeley, 

1975) can easily be added to the list, but the above three suffice to illustrate the point. Human cognition is 

strongly context sensitive. 

The standard classicist response to such empirical challenges is to refer to the competence / 

performance distinction (Aizawa, 2003) — the idea that people are clearly capable of systematicity even if 

they sometimes fail to demonstrate it in particular circumstances. However, commercial symbolic AI 

systems are explicitly designed to have as few performance-related limitations as possible and yet they face 
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well-known difficulties in dealing with common sense knowledge and practical reasoning tasks that people 

perform effortlessly. Arguably, these difficulties stem from the fact that a purely syntactic, formal 

representational system bottoms out in a sea of meaningless “atoms” and is undermined by the symbol 

grounding problem (Harnad, 1990). 

On the other hand, the classicist position also has merit. There are circumstances in which it is 

desirable to be as context insensitive as possible. Perhaps the strongest examples come from the domain of 

deductive inference. Changing the meaning of a term halfway through a logical proof leads to the fallacy of 

equivocation. Consider the following fallacious argument: 

	
  
2a. A feather is light. 

	
  
	
  

2b. What is light cannot be dark. 
	
  
	
  

2c. *Therefore, a feather cannot be dark. 
	
  
	
  

Here the word “light” appears in two different (context-dependent) senses in the two premises, 

which breaks the inferential chain. All tokens of a symbol in logic must have identical meaning throughout 

the proof or else it is not a valid proof. Despite their natural tendency for context specificity, people can 

appreciate Aristotle’s basic insight that the validity of deductive inference depends solely on its form and 

not at all on its content. They can learn to do logic, algebra, theoretical linguistics, and other highly 

abstract and formal disciplines. This fact requires explanation, just as the pervasive tendency for context 

sensitivity requires explanation. Classical connectionist theories explain context sensitivity well, but have 

yet to provide a fully satisfying explanation of the limited systematicity that people demonstrate. 

We see the tradeoff between context sensitivity vs. combinatoriality as emblematic of the 

systematicity debate more generally. The literature is dominated by attempts to defend positions close to 

the extremes of the continuum. Our position, by contrast, recognizes that human cognition seems better 

characterized as a combination of systems operating at different points along this continuum, and for good 

reason: it works better that way. Thus, FP88 are extreme in advocating that human cognition should be 

characterized as purely combinatorial. Taken literally, the pure symbol processing approach fails to take 
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into account the considerable context sensitivity that people leverage all the time to make us truly smart, 

giving us that elusive common sense that such models have failed to capture all these years (and indeed 

Fodor himself has more recently noted that context-sensitivity of most aspects of human cognition is 

among the clearest and most notable findings of cognitive psychology; Fodor (2001)). In other words, 

FP88 focus on the sharp, pristine “competence” tip of the cognitive iceberg, ignoring all the rich contextual 

complexity and knowledge embedded below the surface, which can be revealed in examining people’s 

actual real-world performance. On the other side, basic 1980’s-style connectionist networks are strongly 

weighted toward the context sensitivity side of the spectrum, and fail to capture the considerable 

systematicity that people can actually exhibit, e.g., when confronting novel situations, or systematic 

domains such as syntactic processing or mathematics. For example, while McClelland and colleagues have 

shown that such networks can capture many aspects of the regularities and context sensitivities of English 

word pronunciation (Plaut, McClelland, Seidenberg, & Patterson, 1996), they also had to build into their 

network a precisely hand-tuned set of input features that balanced context sensitivity and combinatoriality 

– in other words, the modelers, not the network, solved important aspects of this tradeoff. Furthermore, 

such models are nowhere near capable of exhibiting the systematicity demonstrated in many other aspects 

of human cognition (e.g., in making grammaticality judgments on nonsense sentences, as in Chomsky’s 

example). 

As an example of the need to integrate multiple aspects of human cognition (Anderson & Lebiere, 

2003) proposed a test for theories of cognition called the Newell Test. It consisted of a dozen criteria 

spanning the full range from pure combinatoriality (e.g., “behave as an almost arbitrary function of the 

environment”) to high context sensitivity (e.g., “behave robustly in the face of error, the unexpected and the 

unknown”). They evaluated two candidate theories, ACT-R and Classical Connectionism, and found them 

both scoring well against some criteria and poorly against others. Strengths and weaknesses of the two 

theories were mostly complementary, indicating that human cognition falls at some intermediate point on 

the combinatorial-context sensitive spectrum. 
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Just as we find extremism on the context sensitivity vs. combinatoriality dimension to be 

misguided, we similarly reject extremist arguments narrowly focused on one level of Marr’s famous three-

level hierarchy of computation, algorithm, and implementation. Advocates of symbol processing models 

like to argue that they capture the computational level behavior of the cognitive architecture, and everything 

else is “mere implementation”. From the other side, many neuroscientists and detailed neural modelers 

ignore the strong constraints that can be obtained by considering the computational and algorithmic 

competencies that people exhibit, which can guide top-down searches for relevant neural processing 

mechanisms. We argue for a balanced view that does not single out any privileged level of analysis. Instead, 

we strive to integrate multiple constraints across levels to obtain a convergent understanding of human 

cognitive function (Jilk, Lebiere, O’Reilly, & Anderson, 2008). 

This convergent, multi-level approach is particularly important given our central claim that 

different brain areas lie at different points on the context sensitivity vs. combinatoriality continuum (and 

differ in other important ways as well) — the biological data (at the implementational level) provides 

strong constraints on the nature of the computations in these different brain areas. In contrast, a purely 

computational-level account of this nature would likely be very underconstrained in selecting the specific 

properties of a larger set of specialized processing systems. Thus, most purely computational-level 

accounts, such as FP88, tend to argue strongly for a single monolithic computational-level system as 

capturing the essence of human cognition, whereas we argue above that such an approach necessarily fails 

to capture the full spectrum of human cognitive functionality. 

In the following, we present a comprehensive overview of a number of different ways in which 

neural networks in different parts of the brain can overcome a strong bias toward context sensitive, 

embedded processing that comes from the basic nature of neural processing. From both an evolutionary 

and online processing perspective (processing recapitulates phylogeny?), we argue that more strongly 

context-sensitive processing systems tend to be engaged first, and if they fail to provide a match, then 

progressively more combinatorial systems are engaged, with complex sequential information processing 

supported by the PFC / BG system providing a “controlled processing” system of last resort. 
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This is similar to the roles of the symbolic and subsymbolic levels in hybrid architectures such as 

ACT-R. The subsymbolic level is meant to replicate many of the adaptive characteristics of neural 

frameworks. For instance, the activation calculus governing declarative memory includes mechanisms 

supporting associative retrieval such as spreading activation as well as context-sensitive pattern matching 

such as partial matching based on semantic similarities corresponding directly to distributed 

representations in neural networks. A mechanism called blending (Lebiere, 1999) aggregates together 

individual chunks of information in a similar way that neural networks blend together the individual 

training instances that they were given during learning. Together with others similarly controlling 

procedural flow, those mechanisms constitute the highly context-sensitive, massively parallel substrate that 

controls every step of cognition. If they are successful in retrieving the right information and selecting the 

correct action, processing just flows with little awareness or difficulty, for instance when the right answer to 

a problem just pops in our head. But if they fail, then the mostly symbolic, sequential level takes over to 

deploy painstaking backup procedures at considerable effort to maintain the proper context information and 

select the right processing step at each moment. 

Our most systematic, combinatorial computational model of this PFC / BG system demonstrates 

how an approximate, limited form of indirect variable binding can be supported through observed patterns 

of interconnectivity among two different PFC / BG areas (Kriete, Noelle, Cohen, & O’Reilly, submitted). 

We have shown that this model can process items in roles that they have never been seen in before, a 

capability that most other neural architectures entirely fail to exhibit. We then argue how this basic 

indirection dynamic can be extended to handle limited levels of embedding and recursion, capabilities that 

appear to depend strongly on the most anterior part of the PFC (APFC or frontopolar PFC, BA10) 

(Christoff, Prabhakaran, Dorfman, Zhao, Kroger, Holyoak, & Gabrieli, 2001; Bunge, Helskog, & 

Wendelken, 2009; Koechlin, Ody, & Kouneiher, 2003; Stocco, Lebiere, O’Reilly, & Anderson, 2012). 

Thus, overall, we identify a full spectrum of processing mechanisms, arrayed along the continuum between 

context sensitivity and combinatorial, systematic processing, and associated with different parts of the 

human brain. We find that attempting to understand the role of these different brain areas through the lens 

of systematicity results in a rich picture of human cognitive abilities. 
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Biological neural network processing constraints 
	
  
	
  

Neuroscience has come a very long way in the intervening 25 years since Fodor and Pylyshyn’s 

(1988) seminal article. Yet, fundamentally, it has not moved an inch from the core processing constraints 

that were understood in 1988, and captured in that first generation of neural network models. What has 

changed is the level of detail, and certainty, with which we can assert these constraints. Fundamentally, 

information processing in the neocortex takes place through weighted synaptic connections among 

neurons, that adapt through local activity-dependent plasticity mechanisms. Individual pyramidal neurons 

in the neocortex integrate roughly 10,000 different synaptic inputs, generate discrete action potential 

spikes, and send these along to a similar number of downstream recipients, to whom these hard-won spikes 

are just a tiny drop in a large bucket of other incoming spikes. And the process continues, with information 

flowing bidirectionally, and being regulated through local inhibitory interneurons, helping ensure things do 

not light up into an epileptic fit. 

Somehow, human information processing emerges from this very basic form of neural 

computation. Through amazing interventions like the ZIP molecule (Shema, Haramati, Ron, Hazvi, Chen, 

Sacktor, & Dudai, 2011), which resets the learned arrangement of excitatory synaptic channels (and many 

other convergent experiments), we know with high confidence that learning and memory really do boil 

down to these simple local synaptic changes. Just as the early neural network models captured, processing 

and memory are truly integrated into the same neural substrate. Indeed, everything is distributed across 

billions of neurons and trillions of such synapses, all operating in parallel. These basic constraints are not 

in dispute by any serious neuroscientist working today. 

The implications of this computational substrate favor context sensitive, embedded processing, in 

contrast to the pure combinatoriality of the symbol processing paradigm. First, neurons do not 

communicate with symbols, despite the inevitable urge to think of them in this way (O’Reilly, 2010). 

Spikes are completely anonymous, unlabeled, and nearly insignificant at an individual level. Thus, the 

meaning of any given spike is purely a function of its relationship to other spikes from other neurons, in the 

moment and over the long course of learning that has established the pattern of synaptic weights. In effect, 
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neurons live in a big social network, learning slowly who they can trust to give them reliable patterns of 

activation. They are completely blind to the outside world, living inside a dark, wet sea, relying completely 

on hearsay and murmurs to try to piece together some tiny fragment of “meaning” from a barrage of 

seemingly random spikes. That this network can do anything at all is miraculous, and the prime mover in 

this miracle is the learning mechanism, that slowly organizes all these neurons into an effective team of 

information processing drones. Armed with many successful learning models, and a clear connection 

between known detailed features of synaptic plasticity mechanisms and effective computational learning 

algorithms (O’Reilly, Munakata, Frank, Hazy, & Contributors, 2012), we can accept that this can all work. 

The primary constraints on information processing from all this, are that each neuron is effectively 

dedicated to a finite pattern detection role, where it sifts through the set of spikes it receives, looking for 

specific patterns, and firing off spikes when it finds them. Because neurons do not communicate in 

symbols, they cannot simply pass a symbol across long distances among many other neurons, telling 

everyone what they have found. Instead, each step of processing has to rediscover meaning, slavishly, from 

the ground up, over time, through learning. Thus, information processing in the brain is fully embedded in 

dedicated systems. There is no such thing as “transparency” – it is the worst kind of cronyism and payola 

network, an immense bureaucracy. Everything is who you know – who you are connected to. We (at least 

independence- and freedom-loving Americans) would absolutely hate living inside our own brains! 

This kind of network is fantastic for rapidly processing specific information, dealing with known 

situations and quickly channeling things down well-greased pathways – in other words, context sensitive 

processing. However, as has been demonstrated in many neural network models (Plaut et al., 1996), 

exceptions, regularities, interactions, main effects – all manner of patterns can be recognized and processed 

in such a system, with sufficient learning. 

From an evolutionary perspective, it is not hard to see why this is a favored form of information 

processing for simpler animals. We argue that the three more evolutionarily ancient brain structures, the 

basal ganglia, cerebellum, and hippocampus, all employ a “separator” processing dynamic, which serves to 

maximize context sensitivity and minimize possible interference from other possibly unrelated learning 
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experiences. In each of these areas, the primary neurons are very sparsely active, and thus tend to fire only 

in particular contexts. However, the most evolutionarily recent brain area, the neocortex, has relatively 

higher levels of neural activity, and serves to integrate across experiences and extract statistical regularities, 

which can be combinatorially recombined to process novel situations. In prior work, the extreme context 

sensitivity of the sparse representations in the hippocampus has been contrasted with the overlapping, more 

systematic, combinatorial representations in the neocortex (McClelland, McNaughton, & O’Reilly, 1995), 

with the conclusion that both of these systems are necessary and work together to support the full range of 

human cognition and memory functionality. 

Next, we show how, against this overall backdrop of context sensitive, embedded neural 

processing, information can be systematically transformed through cascades of pattern detectors, which 

can extract and emphasize some features, while collapsing across others. This constitutes the first of 

several steps toward recovering approximate symbol processing systematicity out of the neural substrate. 

	
  
	
  

The systematicity toolkit afforded by different neural systems 
	
  
	
  

Here we enumerate the toolkit of different cognitive-level capabilities that contribute to human 

systematicity, and how we think they are deployed to enable people to sometimes approximate 

combinatorial symbol processing. The crux of FP88’s argument rests on the observation that people exhibit 

a level of systematicity that is compatible with the symbol processing model, and not with traditional 

connectionist models. Technically, systematicity is a relation among entities that are internal to the 

cognitive system. The systematicity of representation is a relation among certain representations, the 

systematicity of inference is a relation among the capacities to perform certain inferences, and so forth 

(Aizawa, 2003; Johnson, 2004). As these internal relations cannot be observed directly, the systematicity 

hypothesis can be tested only indirectly. There is broad consensus that generalization – the ability to apply 

existing knowledge to some kind of novel case – is the primary evidence for systematicity. As the structural 

overlap between the existing knowledge and the novel case can vary along a continuum, generalization 

comes in degrees. By implication, systematicity also comes in degrees (Hadley, 1994; Niklasson & van 
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Gelder, 1994). Thus, it is counterproductive to view the systematicity debate as a dichotomous choice 

between two irreconcilable opposites. A more balanced view seems much more appropriate. In support of 

this view, the remainder of this article enumerates all sources of graded generalization that exist in neural 

networks and articulates how they all contribute to the increasingly systematic patterns of generalization 

demonstrated by people. 

	
  
	
  
Categorical Abstraction (neocortex) 

	
  
	
  

Networks of neurons, typically in the context of a hierarchical organization of representations, can 

learn to be sensitive to some distinctions in their inputs, while ignoring others. The result is the formation 

of a categorical representation, which abstracts over some irrelevant information while focusing on other 

relevant dimensions of variation. When processing operates on top of such categorical abstractions, it can 

be much more systematic, in that novel inputs with appropriate features that drive these categorical 

representations can be processed appropriately. Examples include common-sense categories (“dog”, “cat”, 

“chair”, etc), and also less obvious but important categories such as “up”, “down”, etc. We know for 

example that the ventral visual stream, likely common to most mammals, systematically throws away 

spatial information and focuses contrasts on semantically-relevant visual categorization (Ungerleider & 

Mishkin, 1982; Goodale & Milner, 1992). The abstract “symbolic” categories of small integer numbers 

have been demonstrated to exist in at least some form in monkeys and other animals, including in PFC 

recordings (Nieder, Freedman, & Miller, 2002). In all of these cases, abstraction only works if an input has 

certain features that drive learned synaptic pathways that lead to the activation of a given abstract category 

representation. Thus, this form of generalization or systematicity implies a certain scope or basin of feature 

space over which it operates. But this can nevertheless be rather broad – “thing” and “one” are both rather 

severe abstractions that encompass a very broad scope of inputs. Categorical abstraction thus yields 

representations that can be used more systematically, since they are effectively stripped of context. 

Furthermore, it is possible to use top-down attentional processes to emphasize (or even create) certain 

feature activations in order to influence the categorization process and make it considerably more general – 

this is an important “hook” that the PFC can access, as we describe later. 
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One key limitation of abstraction is that, by definition, it requires throwing away specific 

information – this can then lead to confusion and “binding errors” when multiple entities are being 

processed, because it can be difficult to keep track of which abstraction goes with which concrete entity. 

For example, perhaps you know someone who tends to use very general terms like “thing” and “this” and 

“that” in conversations – it is easy to lose track of what such people are actually saying. 

	
  
	
  
Relational Abstraction (neocortex) 

	
  
	
  

This is really a subtype of categorical abstraction, but one which abstracts out the relationship 

between two or more items. For example, “left of” or “above”, or “heavier” are all relational abstractions 

that can be easily learned in neural networks, through the same process of enhancing some distinctions 

while collapsing across others (O’Reilly & Busby, 2002; Hinton, 1986). Interestingly, there is often an 

ambiguity between which way the relationship works (e.g., for “left-of”, which object is to the left and 

which is to the right?), which must be resolved in some way. One simple way is to have a dynamic focus of 

attention, which defines the “subject” or “agent” of the relationship. In any case, this relational ability is 

likely present in parietal spatial representations, and rats routinely learn “rules” such as “turn right” in 

mazes of various complexity. Indeed, it may be that motor actions, which often need to be sensitive to this 

kind of relational information, and relatively insensitive to semantic “what” pathway information, provide 

an important driver for learning these relational abstractions (Regier & Carlson, 2001). Once learned, these 

relational representations provide crucial generalizable ingredients for structure-sensitive processing — 

they are abstract representations of structure that can drive further abstract inferences about the structural 

implications of some situation, irrespective of the specific “contents”. For example, a relational 

representation of physical support, such as “the glass is on the table” can lead to appropriate inferences for 

what might happen if the glass gets pushed off the table. These inferences will automatically apply to any 

entity on a table-like surface (even though it may seem that babies learn this fact purely through exhaustive, 

redundant enumeration at their high-chairs). 
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We think these relational and inferential reasoning processes are present in a wide range of 

animals, and can readily be inferred from their behavior. However, there are strong limits to how many 

steps of such reasoning can be chained together, without the benefits of an advanced PFC. Furthermore, the 

binding errors and tracking problems associated with abstract representations, described above, apply here 

as well. Thus, these relational abstractions support making abstract inferences about the implications of 

structural relationships, all at an abstract level, but it requires quite a bit of extra machinery to keep track of 

all the specific items entering into these relationships, and requires de-referencing the abstract inference 

back out to the concrete level again. Again, we see the PFC and its capacity for maintaining and updating 

temporary variable bindings as key for this latter ability. 

	
  
	
  
Combinatorial Generalization (neocortex) 

	
  
	
  

Despite a bias toward context sensitivity, it is possible for simple neural networks to learn a basic 

form of combinatoriality — to simply learn to process a composite input pattern in terms of separable, 

independent parts (Brousse, 1993; O’Reilly, 2001). These models develop “slot-based” processing 

pathways, that learn to treat each separable element separately, and can thus generalize directly to novel 

combinations of elements. However, they have a strong constraint that each processing slot must learn 

independently to process each of the separable elements, because as described above, neurons cannot 

communicate symbolically, and each set of synapses must learn everything on its own from the ground up. 

Thus, such systems must have experienced each item in each “slot” at least a few times, to be able to 

process a novel combination of items. Furthermore, these dedicated processing slots become fixed 

architectural features of the network, and cannot be replicated ad hoc — they are only applicable to 

well-learned forms of combinatorial processing, with finite numbers of independent slots. In short, there 

are strong constraints on this form of combinatorial systematicity, which we can partially overcome 

through the PFC-based indirection mechanism described below. Nevertheless, even within these 

constraints, combinatorial generalization captures a core aspect of the kind of systematicity envisioned by 

FP88, which manifests in many aspects of human behavior. For example, when we sit our participants 

down for a novel experimental task, we tell them what to do using words that describe core cognitive 
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processing operations that they are already familiar with (e.g., push the right button when you see an A 

followed by an X, left otherwise) – it is only the particular combination of such operations and stimuli that 

is novel. In many cases, a simple slot-based combinatorial network can capture this level of generalization 

(Huang, Hazy, Herd, & O’Reilly, in press) 

	
  
Insert Figure 2 about here. 

	
  
	
  
	
  
	
  
Dynamic gating (basal ganglia and PFC) 

	
  
	
  

The BG are known to act as a dynamic gate on activations in frontal cortex, for example in the 

case of action selection, where the BG can “open up the gate” for a selected action among several that were 

being considered (Mink, 1996). Anatomically, this gating takes place through a seemingly over-complex 

chain of inhibitory connections, leading to a modulatory or multiplicative disinhibitory relationship with 

the frontal cortex. In the PFC, this dynamic operates in the context of updating working memory 

representations, where the BG gating signal determines when and where a given piece of information is 

updated and maintained (Frank, Loughry, & O’Reilly, 2001; O’Reilly & Frank, 2006). In many ways, this 

is equivalent to a logic gate in a computer circuit, where a control channel gates the flow of information 

through another channel (O’Reilly, 2006). It enables an important step of content independent processing, 

as in structure-sensitive processing. Specifically, the BG gate can decide where to route a given element of 

content information, based strictly on independent control signals, and not on the nature of that content 

information. In the example shown in Figure 2, “syntactic” form information (passive vs. active verb, cued 

be presence or absence of keyword “was”) can determine whether the preceding word is routed into an 

“agent” slot versus a “patient” slot in working memory. As this example makes clear, dynamic gating also 

helps to resolve the problem of dedicated slots for combinatorial generalization — by being able to 

dynamically route information into different functional slots, these slots can become more generalized in 

nature, reducing the slot-explosion problem. However, it is essential to appreciate that all of this machinery 

must be trained up over time: the BG gating system learns through trial-and-error experience what gating 
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strategies lead to reward (O’Reilly & Frank, 2006; Hazy, Frank, & O’Reilly, 2006, 2007), and the PFC 

“slots” (anatomically referred to as “stripes”) must learn to encode any information that they might 

maintain, while any other brain area that uses this maintained information must also learn to decode it 

(such are the basic constraints of the neural substrate, as articulated above). Thus, whatever systematicity 

this gating system affords must develop slowly over extensive learning experience, consistent with what we 

know about human symbol processing abilities. 

	
  
	
  
Active memory juggling and top-down control (PFC / BG) 

	
  
	
  

The ability to “juggle” activation states in the PFC, through the dynamic BG-mediated gating 

mechanism, can lead to a form of computation that escapes some of the limitations of synaptic weights 

(while still operating within the general confines of learning). Specifically, active maintenance plays a role 

like RAM or registers in a traditional computer architecture — whatever is being actively maintained can 

be rapidly updated (in a matter of a few hundreds of milliseconds), instead of requiring slow repeated 

learning to adapt over time. Thus, I can tell you to “pay attention to the ink color” in the ubiquitous Stroop 

task, and you can dynamically gate in an active representation in PFC that will drive activation of 

color-processing areas in posterior cortex (Herd, Banich, & O’Reilly, 2006; Cohen, Dunbar, & McClelland, 

1990). Then, on the very next trial, you can immediately alter your behavior by gating in a “word reading” 

PFC representation and pay attention to the letters in the word, instead of the ink color. As noted above, 

these PFC representations themselves have to be slowly learned over time, in order to have the appropriate 

impact on processing elsewhere in the brain, but dynamically they can be rapidly updated and deactivated, 

leading to a flexibility that is absent without this PFC / BG mechanism. In principle, this kind of 

activation-based juggling can implement an abstract “state machine” where the active state at one point in 

time conditions what gets updated at the next, and relatively arbitrary sequences of such state transitions 

can be triggered, flexibly. In the ACT-R architecture, production firing serves to update the active state of 

buffers, which we associate with the PFC active maintenance state (Jilk et al., 2008), demonstrating the 

power of this activation-based state machine for arbitrary symbolic-like processing. However, relative to 

ACT-R, the biology of the BG and PFC place stronger constraints on the “matching conditions” and “right 
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hand side” buffer update operations that result from production firing, as we discuss in greater detail below. 

Exactly how strong these constraints are and their implications for overall processing abilities in practice 

largely remains to be seen, pending development of increasingly sophisticated cognitive processing models 

based on this PFC / BG architecture and relevant learning mechanisms. 

We have started making some progress in bridging that gap by implementing a detailed neural 

model of how the basal ganglia can implement the ACT-R procedural module in routing information 

between cortical areas associated with other ACT-R modules (Stocco, Lebiere, & Anderson, 2010). 

Because of prior factoring of neural constraints in the evolution of the ACT-R architecture, production 

conditions and actions had already become naturally parallelizable, leading to a straightforward neural 

implementation. However, the detailed neural model reflecting the specific topology and capacity of the 

basal ganglia have suggested new restrictions, such as on the amount of information transfer that can occur 

within a single production. At the symbolic level, this is accomplished by a process of variable binding that 

transfers information from the condition side of the production to its action side. In terms of the neural 

model, that variable binding is simply realized by gating neural channels between cortical areas. 

	
  
	
  
Episodic variable binding (hippocampus) 

	
  
	
  

The hippocampus is well-known to be specialized for rapidly binding arbitrary information 

together in the form of a conjunctive representation, which can later be recalled from a partial cue (Marr, 

1971; McClelland et al., 1995; O’Reilly, 1995; O’Reilly & Rudy, 2001). This is very handy for 

remembering where specific objects are located (e.g., where you parked your car today), the names of new 

people you meet, and a whole host of other random associations that need to be rapidly learned. For 

symbol processing, this rapid arbitrary binding and recall ability can obviously come in handy. If I tell you 

“John loves Mary”, you can rapidly bind the relational and abstract categorical representations that are 

activated, and then retrieve them later through various cues (“who loves Mary?” “John loves who?”). If I 

go on and tell you some other interesting information about Mary (“Mary was out last night with Richard”) 

then you can potentially start encoding and recalling these different pieces of information and drawing 
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some inferences, while not losing track of the original facts of the situation. However, hippocampal 

episodic memory also has limitations – it operates one memory at a time for both encoding and retrieval 

(which is a consequence of its voracious binding of all things at once), and it can take some work to avoid 

interference during encoding, and generate sufficiently distinct retrieval cues to get the information back 

out. But there is considerable evidence that people make extensive use of the hippocampus in complex 

symbolic reasoning tasks – undoubtedly an important learned skill that people develop is this ability to 

strategically control the use of episodic memory. Specific areas of PFC are implicated as these episodic 

control structures, including medial areas of the most anterior portion of PFC (Burgess, Dumontheil, & 

Gilbert, 2007). 

	
  
Insert Figure 3 about here. 

	
  
	
  
	
  
	
  
Indirection-based variable binding (PFC / BG) 

	
  
	
  

The final, somewhat more speculative specialization we describe has the greatest power for 

advancing the kind of systematicity envisioned by FP88. By extending the basic BG dynamic gating of 

PFC in a set of two interconnected PFC areas, it is possible to achieve a form of indirection or 

representation by (neural) address, instead of representing content directly (Kriete et al., submitted)  

(Figure 3). Specifically one set of PFC stripes (region A) can encode a pattern of activity that drives gating 

in the BG for a different set of PFC stripes (region B) – region A can then act as a “puppet master” pulling 

the strings for when the information contained in region B is accessed and updated. This then allows region 

A to encode the structural form of some complex representation (e.g., Noun, Verb and Object roles of a 

sentence), completely independent of the actual content information that fills these structural roles (which 

is encoded in the stripes in region B). Critically, Kriete et al showed that such a system can generalize in a 

much more systematic fashion than even networks using PFC / BG gating dynamics (which in turn 

generalized better than those without gating) (Figure 4). Specifically, it was able to process a novel role 

filler item that had never been processed in that role before, because it had previously learned to encode the 



O’Reilly et al. 21 	
  
	
  
	
  
	
  
BG address where that content was stored. Thus, assuming that the PFC content stripes can encode a 

reasonable variety of different information, learning only the addresses and not the contents can lead to a 

significant increase in the scope of generalization. Nevertheless, as in all the examples above, all of these 

representations must be slowly learned in the first place. Our model demonstrates that, with appropriate 

connectivity and the same learning mechanisms used for prior PFC / BG models (O’Reilly & Frank, 2006), 

this learning can happen naturally. 

	
  
Insert Figure 4 about here. 

	
  
	
  
	
  
	
  
	
  

Putting it all together 
	
  
	
  

Having enumerated a range of different mechanisms, each of which promotes systematicity in a 

specific way, we now attempt to spell out some particular examples for how a complex sequence of 

cognitive operations, which achieves a limited approximation of classical symbol processing could unfold 

through the interactions of these systems. Note that these examples are based on informed speculation, not 

hard data, and we do not currently have well-validated biologically-based models that capture the behavior 

we describe. Nevertheless, we consider it plausible that this is how it is actually solved in the human brain, 

based on a variety of sources too numerous to explicate here. Moreover, this speculation is informed by 

models of similar tasks (e.g., (Lebiere, 1999) in higher-level frameworks for which a correspondence to the 

neural architecture exists, such as ACT-R (see section on the SAL framework below). Recently, this 

methodology of developing higher-level symbolic models to guide the structure and content of neural 

models has been applied to the complex task of sensemaking (Lebiere, Pirolli, Thomson, Paik, 

Rutledge-Taylor, Staszewski, & Anderson, submitted). 
	
  

First, consider the case of multi-digit mental arithmetic, e.g., multiplying 42 x 17. This requires a 

systematic sequence of cognitive operations, and keeping track of partial products, which most adults can 

apply to arbitrary numbers (i.e., in a fully systematic, content-independent manner). Before we consider 

how this happens in the general case, it is important to appreciate that if the problem was 10 x 42 for 
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example, one would use a much faster context sensitive special-case process to arrive at the answer — 

people automatically and effortlessly recognize and apply these special case solutions, demonstrating the 

primacy of context sensitivity as we argued above. Furthermore, in the well-studied domain of chess 

experts, much of the expertise is associated with this special-case pattern recognition ability, and not with 

optimization of a fully general-purpose algorithm, whereas symbolic computer models of chess have the 

exact opposite profile, optimizing a general-purpose search algorithm instead of memorizing a bunch of 

special cases (Chase & Simon, 1973). 

This fundamental distinction between cognitive and algorithmic solutions arises from the 

hardware available to those classes of solutions. Traditional CPUs are able to flawlessly execute billions of 

operations per second, but the access to the largest memory store is considerably slower and sequential. 

Thus algorithmic solutions evolved to emphasize computation over memory. Neural hardware, on the other 

hand, is the mirror image: an excruciatingly slow and error-prone central loop (on the order of 20Hz, about 

8 orders of magnitude slower than off-the-shelf CPUs) but an extremely powerful, context-sensitive, 

massively parallel access to long-term memory. Cognitive solutions, therefore, evolved to emphasize 

memory over computation and, when computation is necessary, attempt to cache its results as efficiently 

and automatically as possible. 

To begin on the general-case multi-digit multiplication problem, people will almost certainly start 

by encoding the problem into hippocampal episodic memory, so they can retrieve it when interference 

overtakes the system and they lose track of the original problem. The next step is to recall an overall 

strategy for such problems, and the BG gates an abstract encoding of this strategy into an anterior portion 

of dorsal-lateral PFC (DLPFC). This “strategy plan” representation then activates the first step of the 

strategy, in a more posterior portion of DLPFC, which then drives top-down perceptual biasing in the 

parietal cortex to focus attention on the ones decimal place numbers (i.e., the right-most digits). 

Considerable categorical abstraction is required to even extract a numerical value from a particular pattern 

of light and dark on the retina, and abstract relational representations are required to focus on the 

appropriate portions of the digits, including things like top, bottom, right, etc. 
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In any case, you end up activating the sub-problem of multiplying 7 x 2, which should activate the 

answer of 14 through well-learned parietal or perhaps temporal verbally-mediated representations, perhaps 

even with support from the hippocampus depending on your educational status and level of recent practice. 

Having produced this answer, you cache away this partial product either by gating it into another available 

stripe in PFC (perhaps in verbal and / or numeric coding areas), or by encoding it episodically in the 

hippocampus (or likely both, as the hippocampus is automatically encoding everything). Next, guided by 

the strategic plan, you move on to the tens position in the first number, multiplying 7 times 4, encoding the 

28, and so on. After each step, the partial products must be tagged and encoded in a way that they can later 

be accessed for the final addition step, which in itself may require multiple sub-steps, with carry-overs etc. 

An indirection-based variable-binding solution may be employed here, where each partial product is 

encoded in a different stripe, and “tagged” with the functional role of an ordinal list of items to add. Of 

course, items may be added incrementally in an opportunistic, context-sensitive manner, and various 

permutations on an overall strategy may be employed. But clearly, considerable “activation based juggling” 

of information is required, along with likely several strategic hippocampal episodic encoding and retrieval 

steps to maintain the partial products for subsequent processing. 

At some level of description, this could be considered to be a kind of classical symbol processing 

system, with the hippocampus playing the role of a “tape-like” memory system in the classical Turing 

model, and DLPFC coordinating the execution of a mental program that sequences cognitive operations 

over time. We do not disagree that, at that level of description, the brain is approximating a symbol 

processing system. However, it is essential to appreciate that each element in this processing system has 

strong neurally-based constraints, such that the capacity to perform this task degrades significantly with 

increasing number size, in a way that is completely absent in a true symbol processing system, which can 

churn along on its algorithm indefinitely, putting items on the stack and popping them off at will. In 

contrast, the human equivalent of the “stack” is severely limited in capacity, subject to all manner of 

interference, and likely distributed across multiple actual brain systems. Furthermore, as noted above, the 

human brain will very quickly recognize shortcuts and special cases (e.g., starting with 42 x 20 as an easier 

problem and adjusting from there), in ways that no Turing machine would be able to. Thus, the bias toward 
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context sensitive processing results in very rapid and efficient processing of familiar cases – a perfectly 

sensible strategy for a world where environments and situations are likely to contain many of the same 

elements and patterns over time. 

Indeed, a symbolic architecture such as ACT-R operates exactly in the way described above, with 

the hippocampus corresponding to declarative memory and the DLPFC corresponding to the retrieval 

buffer through which cognitive operations would flow for execution by the procedural system. Limitations 

arise through the subsymbolic level controlling the operations of the symbolic level. Chunks may exist 

perfectly crisp and precise at the symbolic level, but their activation ebbs and flows with the pattern of 

occurrence in the environment and their retrieval is approximate, stochastic and error-prone. Similarly, 

productions may implement a clock-like finite state machine, but the chaining of their individual steps into 

a complex processing stream is dependent on the stochastic, adaptive calculus of utilities that makes 

flawless execution of long procedures increasingly difficult and unlikely. Other system bottlenecks at both 

the architectural and subsymbolic level include limited working memory, attentional bottlenecks and limits 

on execution speed for every module. Thus, hybrid symbolic-subsymbolic architectures such as ACT-R 

provide us with an abstraction of the capacities and limitations of neural architectures that can guide their 

development. 

	
  
	
  

Discussion 
	
  
	
  

We conclude with a brief discussion of some additional points of relevance to our main arguments, 

including highlighting the importance of data on the timecourse of learning and development on 

understanding the nature of human systematicity, the importance of multi-level modeling and the specific 

case of relating the ACT-R and Leabra modeling frameworks, and comparing and contrasting our models 

with other related models in the literature. 



O’Reilly et al. 25 	
  
	
  
	
  
	
  

The Importance of Learning and Development of Systematicity 
	
  
	
  

We put a lot of emphasis on the role of “learning from the ground up” as a strong constraint on the 

plausibility of a given cognitive framework. Empirically, one of the strongest arguments in favor of our 

overall approach comes from the developmental timecourse of symbolic processing abilities in people – 

only after years and years of learning do we develop symbolic processing abilities, and the more advanced 

examples of these abilities depend critically on explicit instruction (e.g., math, abstract logic). Only in the 

domain of language, which nevertheless certainly is dependent on a long timecourse of exposure and 

learning from a rich social world of language producers, does systematicity happen in a relatively natural, 

automatic fashion. And as we discuss in greater detail in a moment, language development provides many 

possible windows into how systematicity develops over time – it is certainly not a hallmark of language 

behavior right from the start. 

In short, we argue that learning processes, operating over years and often with the benefit of 

explicit instruction, enable the development of neural dynamics involving widely distributed interacting 

brain systems, which support these approximate symbol processing abilities. It is not just a matter of 

“resource limitations” slapped on top of a core cognitive architecture that does fully general symbol 

processing, as argued by FP88 – the very abilities themselves emerge slowly and in a very graded way, 

with limitations at every turn. We think this perspective on the nature of human symbolic processing argues 

strongly against systems that build in core symbol processing abilities as an intrinsic part of the 

architecture. But unlike some of our colleagues (McClelland et al), we nevertheless agree that these 

approximate symbol processing abilities do develop, and that they represent an important challenge for any 

neural network framework to account for. 

One of the most famous debates between connectionists and symbol-processing advocates took 

place in the context of the developmental data on the U-shaped curve of overregularization of the past tense 

morphology in English. After correctly producing irregular verbs such as “went”, kids start saying things 

like “goed”, seemingly reflecting discovery and application of the regular “rule” (“add -ed”). First, this 

doesn’t happen until age 3 or 4 (after considerable exposure and productive success with the language), and 
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it is a very stochastic, variable process across kids and across time. Rates of overregularization rarely 

exceed a few percent. Thus, it certainly is not the kind of data that one would uphold as a clear signature of 

systematicity. Instead, it seems to reflect some kind of wavering balance between different forces at work 

in the ever-adapting brain, which we argue is a clear reflection of the different balances between context 

sensitivity and combinatoriality in different brain areas. Interestingly, single-process generic neural 

network models do not conclusively demonstrate this U-shaped curve dynamic, without various forms of 

potentially questionable manipulations. Some of these manipulations were strong fodder for early critiques 

(Rumelhart & McClelland, 1986; Pinker & Prince, 1988), but even later models failed to produce this curve 

in a purely automatic fashion without strong external manipulations. For example, the Plunkett and 

Marchman (1993) model is widely regarded as a fully satisfactory account, but it depends critically on a 

manipulation of the training environment that is similar to the one heavily criticized in (Rumelhart & 

McClelland, 1986). 

	
  
	
  
Convergent multi-level modeling: The SAL framework 

	
  
	
  
	
  

Insert Figure 5 about here. 
	
  
	
  
	
  

A valuable perspective on the nature of symbolic processing can be obtained by comparing across 

different levels of description of the cognitive architecture. The ongoing SAL (Synthesis of ACT-R and 

Leabra) project provides important insight here (Jilk et al., 2008). ACT-R is a higher-level cognitive 

architecture that straddles the symbolic / subsymbolic divide (Anderson & Lebiere, 1998; Anderson, 

Bothell, Byrne, Douglass, Lebiere, & Qin, 2004), while Leabra is a fully neural architecture that embodies 

the various mechanisms described above (O’Reilly et al., 2012). Remarkably, we have found that, through 

different sources of constraint and inspiration, these two architectures have converged on largely the same 

overall picture of the cognitive architecture (Figure 5). Specifically, both rely on the PFC / BG mechanism 

as the fundamental engine of cognitive sequencing from one step to the next, and this system interacts 

extensively with semantic and episodic declarative memory to inform and constrain the next actions 
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selected. In ACT-R, the PFC / BG system is modeled as a production system, where production matching 

criteria interrogate the contents of active memory buffers (which we associate with the PFC in Leabra). 

When a production fires, it results in the updating of these buffers, just as the BG updates PFC working 

memory in Leabra. Productions are learned through a reinforcement-based learning mechanism, which is 

similar across both systems. 

A detailed neural model of how the topology and physiology of the basal ganglia can enable 

computations analog to the ACT-R production system has been developed (Stocco et al., 2010). As 

previously discussed, that model explains how the abstract symbolic concept of variable binding has a 

straightforward correspondence in terms of gating information flows between neural areas. Another major 

outstanding issue regarding symbolic representations is the ability to arbitrarily compose any values or 

structures, which in turn translates into the capacity to implement distal access to symbols (Newell, 1990). 

The original implementation of ACT-R into neural networks (Lebiere & Anderson, 1993) assumed a 

system of movable codes for complex chunks of information that could be decoded and their constituent 

parts extracted by returning to the original memory area where the composition was performed. Recent 

architectural developments (Anderson, 2007) such as the separation of the goal-related information into a 

goal buffer containing goal state information and an imaginal buffer containing the actual problem content. 

The former is associated with the working memory functionality of the prefrontal cortex while the latter is 

associated with the spatial representation and manipulation functions of the parietal cortex. This suggests 

that rather than using movable codes, distal access is implemented using a system of control connections 

that can remotely activate constructs in their original context. 

	
  
	
  
Other Neural Network Approaches to Systematicity 

	
  
	
  

There have been a number of different approaches to introducing systematicity into neural 

network models over the years (Bodén & Niklasson, 2000; Chalmers, 1990; Christiansen & Chater, 1994; 

Hadley, 1997; Hadley & Hayward, 1997; Niklasson & van Gelder, 1994; Smolensky, 1988, 1990b; 

Smolensky & Legendre, 2006). Broadly speaking, our approach is distinct from these others in focusing on 
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a systems neuroscience perspective to the problem, both in terms of differential specializations of different 

brain areas, and how overall symbol processing functionality can emerge through the complex interactions, 

over distinct time steps, between these specialized areas, as sketched above in our multi-digit arithmetic 

example. 

In terms of specific points of comparison, one of the most important mechanisms for achieving 

any kind of symbol processing is arbitrary variable binding, which we have argued above depends on 

episodic memory in the hippocampus, and the indirection-based dynamics in the PFC / BG system (Kriete 

et al., submitted). A number of models adopt a tensor product approach to variable binding (Plate, 2008; 

Smolensky, 1990a; Pollack, 1990), which is similar in some respects to the kind of conjunctive binding 

achieved by the hippocampal episodic memory system. Another solution is to assume a synchrony-based 

binding mechanism, but we are skeptical about the evidence for such a mechanism being able to actually 

interleave multiple bindings across a phase cycle (O’Reilly & Busby, 2002; O’Reilly, Busby, & Soto, 

2003). Furthermore, if such a mechanism was in place, it would seem to predict a much more pervasive 

ability to perform arbitrary variable binding than people actually exhibit. In this respect, we think the 

evidence for a long period of learning and development being required before people can even begin to 

demonstrate symbol-processing like abilities is consistent with our focus on variable binding being a 

learned skill that involves the coordinated contributions of multiple brain areas. 

As was evident in our multi-digit arithmetic example, just forming a binding is only part of the 

problem: you also need to be able to manipulate the bound information in systematic ways. Here, we are 

less clear about the strong claims made by these other models: it seems that they mostly engineer various 

mechanisms to achieve what looks to us like implementations of symbol processing mechanisms, without a 

strong consideration for how such mechanisms would operate plausibly in the brain. What is conspicuously 

lacking is an account of how all of the complex neural processing required for these systems can be learned 

through experience-driven plasticity mechanisms. Our own work on this challenging problem is still in its 

infancy, so we certainly cannot claim to have shown how it can be learned from the ground up. 

Nevertheless, we remain optimistic that a learning-based approach fits best with the available human data. 
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Conclusion 
	
  
	
  

After 25 years of earnest debate, considerable progress has been made in advancing our 

understanding about the nature of human systematicity. We hope that our biologically-based, systems 

neuroscience approach to these issues may provide some further insight into the nature of the human 

cognitive architecture, and how a limited form of symbol processing can emerge through interactions 

between different specialized brain areas. We are excited about continuing to advance this program of 

research, to the point of one day showing convincingly how neural tissue can achieve such lofty cognitive 

functions as abstract mathematics and abstract logical reasoning. 
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Figure Captions 
	
  
	
  
	
  
	
  
Figure 1. Example of need for at least some level of context sensitivity, to disambiguate ambiguous input 

in middle of each word. This happens automatically and effortlessly in people. 

	
  
	
  
	
  
Figure 2. Illustration of how the basal ganglia gating dynamic with PFC can separably control the 

functional role assignment of other information, in a content-independent fashion. 

	
  
	
  
	
  
Figure 3. The Kriete et al (submitted) indirection model, performing Simple sentence encoding task, 

demonstrating indirection in the PFC/BG working memory system. Three-word sentences are encoded one 

word at time, with each word associated with a role (“Agent”, “Verb”, or “Patient”). After encoding the 

sentence, the network is probed for each word using the associated roles (e.g. What was the “Agent” of the 

sentence?”). Green indicates currently active inputs, orange represents actively maintained information. 

(A) One step of the encoding process for the sentence “Bob ate steak” in the PFC/BG working memory 

(PBWM) indirection model. The word “Ate” is presented to the network along with its current role 

(“Verb”) and the instruction “Store” to encode this information for later retrieval. In this example, the word 

“Ate” is stored in Stripe2 of PFC filler stripes (left side of figure). The identity/location of Stripe2 is 

subsequently stored in the Verb stripe of PFC role stripes (right side of figure). The same set of events 

occur for each of the other two words in the sentence (filling the agent and patient roles). (B) One step of 

the recall process. A role (Patient in the example) and the instruction Recall are presented as input. This 

drives output gating of the address information stored that role stripe (highlighted by purple arrow), which 

in turn causes the BG units corresponding to that address to drive output gating of the corresponding filler 

stripe, thus outputting the contents of that stripe (Steak). 

	
  
	
  
	
  
Figure 4. Accuracy performance of the Indirection based network juxtaposed against comparison 

networks, for three increasingly challenging generalization tasks. The results are grouped by task: 
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Standard, Anti-correlation, and Generative. Colors correspond to the four networks (from left-to-right): 

SRN, Basic PBWM network with maintenance only, PBWM Output Gating network, and PBWM 

Indirection network. The Indirection network is the only one that is capable of achieving high levels of 

performance across all the tasks. 

	
  
	
  
	
  
Figure 5. Convergent architecture between ACT-R (a) and Leabra (b) developed independently based on 

very different considerations. 
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